Feeds:
Posts
Comments

Posts Tagged ‘সিডিআর’

৫৮.

প্রতিটা মানুষ কতক্ষণ কথা বলে, কোথায় কথা বলে, কার সাথে বেশি বলে, কয়জন তাকে রিং দেয়, কাদের কল কেটে দেয় সে, সারাদিন কোথায় থাকে, কার কার সাথে থাকে – মানে, কাজ করে কোথায়, ঘোরে কাদের সাথে, ঘুমায় কোথায়, কোন জায়গায় যায় বেশি, রিক্সায় যায় না গাড়িতে যায়, কয় টাকা রিচার্জ করে – সব আসে ওই মেশিন লার্নিংয়ে। ‘মিসড কল’ পার্টি কিনা সেটাও বোঝা যায় এই রেকর্ড থেকে। কয়টা এসএমএস যাচ্ছে আসছে সেটাও বোঝায় তার শিক্ষার মাত্রা।

৫৯.

ধরুন দেশের সবচেয়ে বড় নীতি নির্ধারণী কমিটিতে আছেন আপনি। প্ল্যান: তিনশো বাস নামাবেন রাস্তায়। বিশাল আরবান প্ল্যানিংয়ে শুরুতে ঢাকা শহরের মানুষগুলোর আয়ের ধারণা পেতে ‘অ্যাক্সেস’ দেয়া হলো আপনাকে। বিগ ডাটাতে। মোবাইল অপারেটরের নাম নম্বর ছাড়া ওই ‘সিডিআরে’।

৬০.

এর পাশাপাশি, মোবাইল টপ আপেও গল্প আছে অনেক। কতো তাড়াতাড়ি টপ-আপ করছে মানুষটা – সেটার একটা ধারণা পাওয়া যায় মেশিন লার্নিং থেকে। প্রতি টপ-আপে কতো টাকা ভরছে সে, সবচেয়ে বেশি আর কম রিচার্জের একটা যোগসুত্র পাওয়া যায় ওখান থেকে। রিচার্জ টাকার ওই ভ্যারিয়েশনের একটা ‘কোএফিসিয়েন্ট’ আমাদের ধারণা দেয় অনেক কিছু। কি ধরনের ভ্যালু অ্যাডেড সার্ভিস নিয়ে – কিভাবে সেটাকে চালাচ্ছে মানুষজন – সেটাও ধারণা দেয় তাদের আয়ের একটা হিসেব।

৬১.

মোবাইল ফোন কাজ করে ‘বেজ স্টেশন’ ধরে। মোবাইল টাওয়ারের পুরো রেডিয়াস ধরে চলে আসে অনেক জ্ঞান। ফলে, মানুষটা কাদের সাথে থাকে দিনে, মানে কাজ করে কোথায় – আর রাতে ঘুমায় কোন এলাকায় সেটাও ইন্ডিকেট করে তার আয়ের হিসেব। থাকে কোথায় – বস্তি না অ্যাপার্টমেন্ট – সেটাও আসে সঙ্গে। মানুষ দিনের বেলায় কোথায় থাকে সেটাই বড় ধারণা দেয় কতো টাকা আয় করে সে। সেখানে ‘রিজিওন’ ধরে বের করা যায় মানুষের গড়পরতা আয়। মানুষের ট্রাভেল প্যাটার্ন ধারণা দেয় অনেককিছুরই।

৬২.

বাড়তি হিসেবে – অপারেটরের ডিভাইস ম্যানেজারে পাওয়া যায় আরো অনেক গল্প। কি ডিভাইস, ক্যামেরা আছে কি না, আইফোন, না স্যামস্যাং নোট – নাকি নোকিয়া ১১১০ ধারণা দেয় মানুষটার আয়ের ধরন। ফোনগুলোর মধ্যে সিম পাল্টাপাল্টি হলে জানা যায় মানুষটার অন্য ফোনগুলোর হিসেব। তবে, সবকিছুই ‘অ্যানোনিমাস’ ডাটা। ‘অ্যানোমাইজড’ মেটা ডাটা হচ্ছে গ্রাহকের নাম নম্বর না নিয়ে শুধু মোট সংখ্যার একেক ধরনের পরিসংখ্যান। গ্রাহকের ‘প্রাইভেসি’র সমস্যা নেই এতে। আমাদের বের করতে হবে ঢাকা শহরের মানুষের আয়ের সক্ষমতা। বাস ভাড়া হিসেবে। ফেলে দেবো মেশিন লার্নিংয়ে। বিগ ডাটা থেকে।

[…]

Advertisements

Read Full Post »

৫৪.

দুহাজার দশের কথা। বিটিআরসিতে তখন আমি। বিদেশি একটা ইউনিভার্সিটি এলো কথা বলতে। দক্ষিণাঞ্চলের সাগরের তান্ডব তাদের রিসার্চের টপিক। কাহিনী কি? সাগরের সুনামিতে বিপদে পড়ে মানুষ। হারায় সবকিছু। ভাগ্যকে পুঁজি করে চলে আসে শহরে। শেষমেষ, জায়গা হয় বস্তিতে।

৫৫.

এখানে ঝামেলা হয় কয়েকটা। এক. সরকার জানতে পারে না কোথায় গিয়েছে তারা। তখন মার খায় পুনর্বাসনের ব্যাপারটা। তাদেরকে ফিরিয়ে আনার তাগিদ থাকে না কারোই। শেষে, চাপ তৈরি হয় শহরগুলোতে। দুই. মানুষটাকে কি ধরনের সহযোগিতা দিতে হবে সেটাও জানে না এইড এজেন্সীগুলো। তিন. মানুষগুলো কোথায় কোথায় ছড়িয়ে পড়ছে সেটার হিসেব থাকে না কারো কাছে। যদি কোন মহামারী হয় ওই এলাকা থেকে – সেটা ছড়াচ্ছে কোথায় কোথায় – সেটাও জানা দুস্কর।

৫৬.

কি দরকার আপনাদের? জিজ্ঞাসা করলাম তাদের। দরকার ‘এক্সেস’। মোবাইল কোম্পানির ডাটাতে। রিসার্চ টিমের দরকার কিছু ‘অ্যানোমাইজড’ মেটা ডাটা যা বের করে দেবে সবকিছু। প্রজ্ঞা হিসেবে। সরকারের কাজে।

৫৭.

দেখা গেছে মোবাইল ফোনের লগ মেটাডাটায় রয়ে যায় মানুষের স্বভাবজনিত প্রচুর ডিজিটাল ট্রেস। মোবাইল কোম্পানিগুলো তাদের বিলিংয়ের কাজে তৈরি করে ‘কল ডিটেল রেকর্ড’। এই ‘সিডিআর’ একটা নির্দোষ ফরম্যাট। তবে, মিলিয়ন ডাটার সাথে একে ‘অ্যানালাইজ’ করলে মানুষকে প্রজ্ঞা দেয় অন্য লেভেলে।

[…]

Read Full Post »

%d bloggers like this: